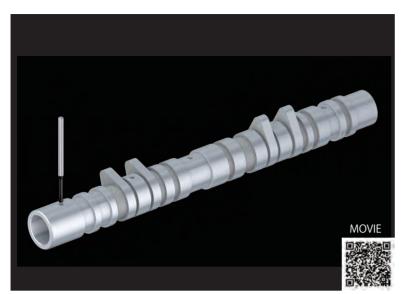


INDEX


Automotive ————————————————————————————————————			
Cam cap	04		
Camshaft	05		
Carrier	06		
Common rail	07	Medical ————	
Connecting rod (Edge face)	08	Artificial bone	43
Connecting rod (Matching surface)	09	Artificial hip joint	44
Control box	10	Convex surface	45
Cooling fin	11	Cup	46
Crankshaft (Cross hole)	12	Cup	40
Cylinder head (Matching surface)	13	General Machinery ————	
Cylinder head (Oil gallery)	14	Board	48
Exhaust manifold	15	Ceramic parts	49
Flange (Mounting hole)	16	Dovetail groove	50
Injector body (Nozzles)	17	Hydraulic block	51
Injector body (Shoulder)	18	Hydraulic valve (Cross hole)	52
Input shaft (Cross hole)	19	Inkroll	53
Oil pan	20	Jig plate	54
Output shaft	21	Joint (Blind hole)	55
Pinion gear	22	Large cast iron parts	56
Plate	23	Pipe (Edge face)	57
Pulley	24	Pipes (SUS)	58
Reduction gear (Cross hole)	25	Spool	59
Ring plate	26	Spur gear	60
Ring-shaped internal gear	27	SUS mold	61
Shaft parts	28	Valve case (Cross hole)	62
Transmission case (Cross hole)	29		
Transmission case (Matching surface)	30	Electronics ——————	
VCT housing	31	Smartphone (Body)	64
Yoke	32		
Yoke	33	Mold ———————	
A		Mold (Cooling hole)	66
Aerospace ————————————————————————————————————		Mold (Sprue hole)	67
Aircraft body	35	NAK mold	68
Blisk	36	SKD mold	69
Landing gear parts	37	SUS mold	70
Pipe parts for aircrafts (Cross hole)	38	Vacuum forming	71
Turbine blade	39	Machine tools	
Turbine disk	40	Machine tools —————	
Wing rib	41	Tool holder	73

Automotive

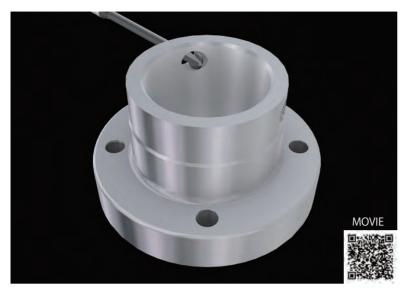
Camshaft

Workpiece information

Industry	Automotive
Part name	Camshaft
Material type	FCD
Cutting process	Drilling

Processing conditions

. recessing containens	
Tool	XEBEC Back Burr Cutter and Path (XC-38-A)
Processing detail	Back deburring after drilling
Spindle Speed (min -1)	9,000
Table Feed (mm/min)	1,000
Depth of cut (mm)	0.25
Machining time (sec)	_


Before Tool Spring-type back deburring tools Problem Uneven edge resulted in over-deburring or incomplete deburring. Tool XEBEC Back Burr Cutter and Path (XC-38-A) Result Uniform edge quality in shorter operating time realized.

Deburring after drilling

Flange (Mounting hole)

Workpiece information

Industry	Automotive
Part name	Flange (Mounting hole)
Material type	Aluminum
Cutting process	Drilling

Processing conditions

Tool	XEBEC Back Burr Cutter and Path (XC-38-A)
Processing detail	Back deburring after drilling
Spindle Spee d (min ⁻¹)	6,000
Table Feed (mm/min)	900
Machining time (sec)	_

Before

Tool Curved bearing scraper

Problem

CN C deburring was not possible due to an off-centered edge. It was not possible to make a path data by users. Manual deburring was time-consuming because no scratch was allowed on a certain part of workpiece.

After

Tool

XEBEC Back Burr Cutter and Path (XC-38-A)

Result

Edge quality improved by CN C deburring. Defective products caused by scratches eliminated.

Deburring after drilling

Yoke

Workpiece information

Industry	Automotive
Part name	Yoke
Material type	SUS430
Cutting process	Chamfering

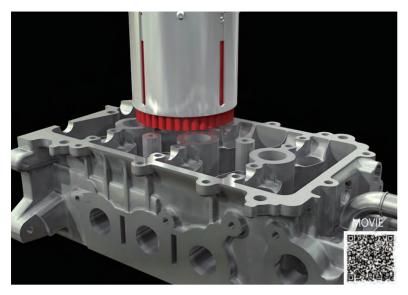
Processing conditions

Tool	XEBEC Brush Surface (A31-CB25M)
Processing detail	Deburring the section after chamfering process
Spindle Speed (min -1)	3,000
Table Feed (mm/min)	_
Depth of cut (mm)	1
Machining time (sec)	_

Tool Problem

Cutter, sandpaper Manual deburring caused unstable quality and high labor cost.

After


Tool Result

XEBEC Brush Surface (A31-CB25M) Fully automated deburring enabled stable quality and shorter processing time. Also the efficiency of processing improved by changing the burr direction by review of pre-process.

Cylinder head (Matching surface)

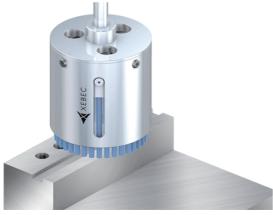
Workpiece information

Industry	Automotive
Part name	Cylinder head (Matching surface)
Material type	ADC12
Cutting process	Face milling processing

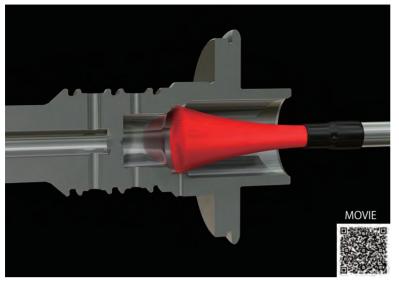
Processing conditions

Tool	XEBEC Brush Surface (A11-CB100M)
Processing detail	Deburring of the matching surface after face milling process.
Spindle Speed (min -1)	1,350
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.5
Machining time (sec)	_

Before


Tool Problem Abrasives-impregnated nylon brush It took long hours for deburring and burrs still remained after processing due to low grinding power. Moreover, workpiece was stained by nylon brushes and man-hour is required for cleaning.

After


Tool Result XEBEC Brush for Surface (A11-CB100M)

Shorter cycle time was realized by high-feed processing. Coolant contamination was reduced to one third and man-hour for cleaning saved.

Input shaft (Cross hole)

Workpiece information

Industry	Automotive
Part name	Input shaft (Cross hole)
Material type	SCM
Cutting process	Drilling

Processing conditions

Tool	XEBEC Brush™ Crosshole (CH-A12-5M + CH-A12-7M)
Processing detail	Crosshole deburring after drilling process
Spindle Speed (min -1)	9,000
Table Feed (mm/min)	300

Before

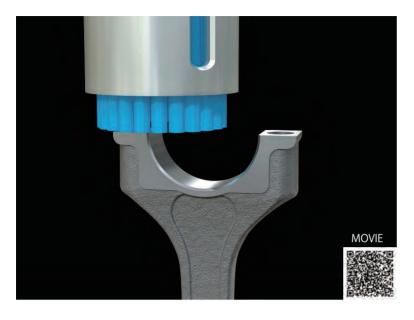
Tool Abrasive-impregnated nylon brush

Burrs are left by manual deburring. It Problem caused low efficiency in processing.

After

Tool

XEBEC Brush for Cross hole (CH-A12-5M + CH-A12-7M)


Full automation realized with custom Result made machine. No burrs left and finish quality improved.

Deburring after drilling Cutter mark removal and polishing on inner diameter

Connecting rod (Matching surface)

Workpiece information

Industry	Automotive
Part name	Connecting rod (Matching surface)
Material type	S45C
Cutting process	Front cutter processing

Processing conditions

Tool	XEBEC Brush for Surface (A31-CB40M)
Processing detail	Deburring the matching surface after face milling process
Spindle Speed (min -1)	1,300
Table Feed (mm/min)	2,800
Depth of cut (mm)	0.4
Machining time (sec)	_

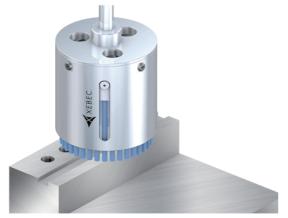
Before

Tool

Abrasive-impregnated nylon brush

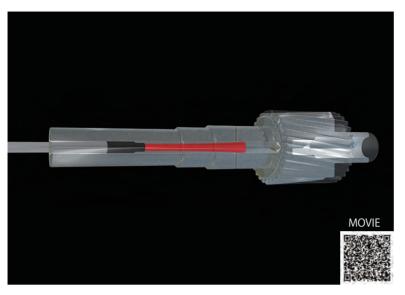
Problem

Burrs remain after deburring by nylon brush due to low grinding power. Additional manual deburring required. Quality unstable and labor cost increased.


After

Tool

XEBEC Brush for Surface (A31-CB40M)

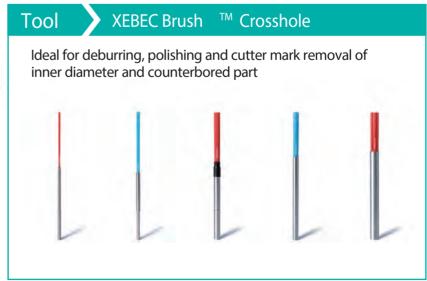

Result

No burrs left and deburring quality stabilized.

Reduction gear (Cross hole)

Workpiece information

Industry	Automotive
Part name	Reduction gear (Cross hole)
Material type	Scr420
Cutting process	Drilling


Processing conditions

Tool	XEBEC Brush Crosshole (CH-A12-3L)
Processing detail	Crosshole deburring after drilling process
Spindle Speed (min -1)	10,800
Table Feed (mm/min)	300

Before Tool Wire brush Tool XEBEC Brush Crosshole (CH-A12-3L) Problem Burr remained by low grinding power. Quality unstable due to deformation of brush material. Result Burr eliminated and stable quality realized at mass-production line.

Deburring after drilling Cutter mark removal and polishing on inner diameter

Transmission case (Cross hole)

Workpiece information

Industry	Automotive
Part name	Transmission case (Cross hole)
Material type	ADC12
Cutting process	Drilling

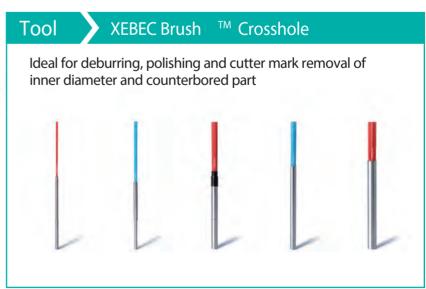
Processing conditions

Tool	XEBEC Brush Crosshole (CH-A12-7L)
Processing detail	Crosshole deburring after drilling process
Spindle Speed (min -1)	7,200
Table Feed (mm/min)	300

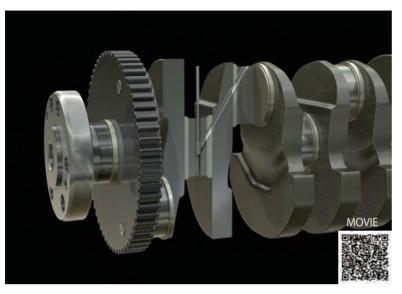
Before

Tool Twisted brushes and rotary tool

Problem Twisted brush was used with rotary tool. It took man-hour for deburring the inside diameter by manual work.


After

Tool XEBEC Brush Crosshole (CH-A12-7L)


Result By introduction of automated deburring, workability and quality of inside diameter improved.

Deburring after drilling Cutter mark removal and polishing on inner diameter

Crankshaft (Cross hole)

Workpiece information

Industry	Automotive
Part name	Crankshaft (Cross hole)
Material type	S48C
Cutting process	Drilling

Processing conditions

Tool	XEBEC Stone Flexible Shaft (CH-PM-5R-C01)
Processing detail	Cross-hole deburring after drilling process
Spindle Speed (min -1)	1,350
Table Feed (mm/min)	_
Depth of cut (mm)	0.5
Machining time (sec)	_

Before

Tool Cutter

Problem Burrs left by manual deburring.
Caused low production rate.

After

Tool XEBEC Stone Flexible Shaft (CH-PM-5R-C01)

Result

By introduction of automated deburring with machining center, stable edge quality and cost reduction realized.

Shaft parts

Workpiece information

Industry	Automotive
Part name	Shaft parts
Material type	SCM
Cutting process	Threading

Processing conditions

Tool	XEBEC Brush for Surface (A21-CB25M)
Processing detail	Deburring (contouring) unfinished parts of female screw with inner diameter Ф24.
Spindle Speed (min -1)	3,000
Table Feed (mm/min)	_

Before

Tool Nylon / wire brush

Problem

Burrs remained by nylon/wire brushes due to insufficient grinding force and manual deburring was required later.


After

Tool

XEBEC Brush for Surface (A21-CB25M)

Result

Automated deburring realized with machining center by contouring the cut-out portion of female bolts with brush after processing the tap. Also, surface quality stabilized.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

contact us

Cooling fin

Workpiece information

Industry	Automotive
Part name	Cooling fin
Material type	Aluminum alloy
Cutting process	Others

Processing conditions

Tool	XEBEC Brush for Surface (A11-CB40M)
Processing detail	Deburring the edge after cutting process
Spindle Speed (min -1)	3,000
Table Feed (mm/min)	800
Depth of cut (mm)	1

Tool

Wire brush

Problem

After deburring process, burrs remained due to complicated shape of workpiece.

After



Tool

XEBEC Brush Surface (A11-CB40M)

Result

No burrs left and finish quality improved.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Plate

Workpiece information

Industry	Automotive
Part name	Plate
Material type	SPH440
Cutting process	Others

Processing conditions

Tool	XEBEC Brush Surface (A11-CB60M)
Processing detail	Deburring the external circumference edge and (4) bores
Spindle Speed (min -1)	900
Depth of cut (mm)	1
Machining time (sec)	3

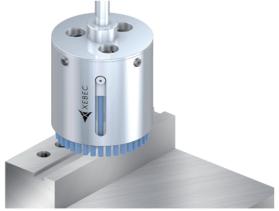
Before

Tool P

Plastic brush

Problem

The brush edge deformed. The inner diameter of cross hole H7 could not be maintained. Mass production machining was not possible.


After

Tool

XEBEC Brush for Surface (A11-CB60M)

Result

Deburring with maintaining the inner edge profile of cross hole H7 without deformation realized. Quality requirement achieved. Also, tool life 65000 pcs/brush realized.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface



contact us

VCT housing

Workpiece information

Industry	Automotive
Part name	VCT housing
Material type	Sintered metal
Cutting process	Front cutter processing

Processing conditions

Tool	XEBEC Brush for Surface (A11-CB40M)
Processing detail	Deburring the edge face after milling process
Spindle Speed (min -1)	500
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.5
Machining time (sec)	_

Before

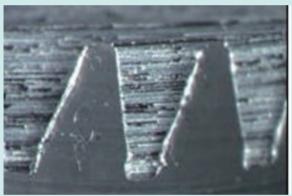

Problem

Abrasive-impregnated nylon brush Deformation of nylon brush shape occurred in mass production process. It caused unstable quality due to insufficient deburring performance and burr remaining.

After

Tool Result XEBEC Brush for Surface (A11-CB40M) No deformation of brush shape in mass production process. Stable cutting parameters with no burrs realized.

Ring-shaped internal gear


Workpiece information

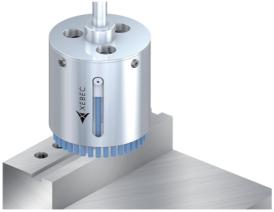
Industry	Automotive
Part name	Ring-shaped internal gear
Material type	S45C
Cutting process	Gear cutting

Processing conditions

Tool	XEBEC Brush Surface (A31-CB40M)
Processing detail	Deburring the gear end face after gear cutting process
Spindle Speed (min -1)	2,000
Depth of cut (mm)	0.5

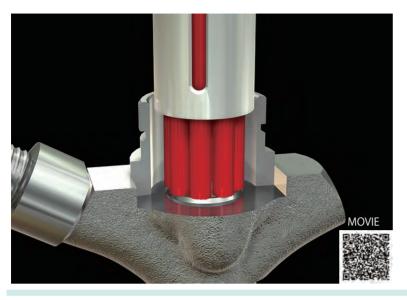
Before

Tool


Problem

Metal filing handwork caused unstable quality. Complex shape of workpiece caused long lead time of deburring and high labour cost.

After



Tool Result XEBEC Brush for Surface (A31-CB40M) Fully automated deburring introduced. Stable quality with shorter processing time as well as cost reduction realized.

Injector body (Nozzles)

Workpiece information

Industry	Automotive
Part name	Injector body (Nozzles)
Material type	SCM
Cutting process	Drilling

Processing conditions

Tool	XEBEC Brush Surface (A11-CB15M) XEBEC Floating Holder (FH-ST12)
Processing detail	Deburring the edge face after drilling process
Spindle Speed (min -1)	2000
Depth of cut (mm)	4

Tool Problem Abrasive-impregnated nylon brush Burrs remained and full inspection required, resulting in high labor cost. **After**

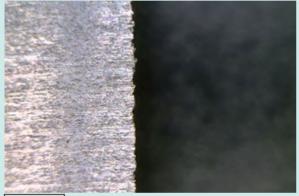
Tool

XEBEC Brush for Surface (A11-CB15M), XEBEC Floating Holder (FH-ST12)

Result

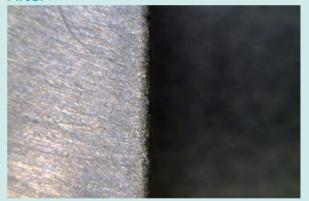
No burr remaining realized by automated deburring with machining center. Besides, this enabled introduction of random sampling instead of full inspection and cost reduction achieved. Surface roughness of processed area improved.

Injector body (Shoulder)


Workpiece information

Industry	Automotive
Part name	Injector body (Shoulder)
Material type	SCM
Cutting process	End milling processing

Processing conditions


Tool	XEBEC Brush Surface (A21-CB06M) XEBEC Floating Holder (FH-ST12)
Processing detail	Deburring of boundary line on the casting surface after end milling
Spindle Speed (min -1)	5000
Depth of cut (mm)	4

Before

Tool Problem Abrasive-impregnated nylon brush Burrs remained and full inspection required, resulting in high labour cost.

After

Tool

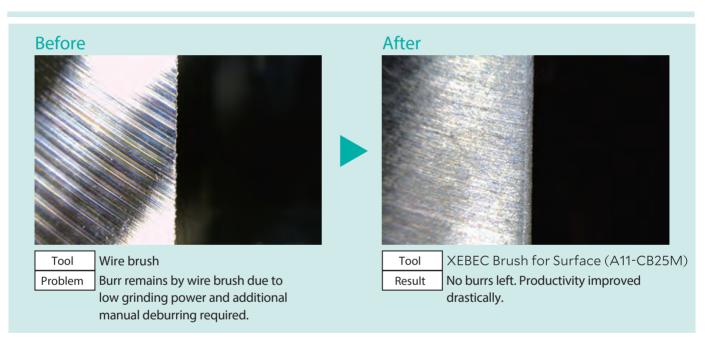
XEBEC Brush for Surface (A21-CB06M) XEBEC Floating Holder (FH-ST12)

Result

Complete removal of burrs achieved by CNC deburring with machining center. Besides, this enabled introduction of random sampling instead of full inspection and cost reduction achieved. Besides, surface roughness of processed area improved.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Control box




Workpiece information

Industry	Automotive
Part name	Control box
Material type	Aluminum alloy
Cutting process	Front cutter processing

Processing conditions

Tool	XEBEC Brush for Surface (A11-CB25M)
Processing detail	Deburring the edge face after milling process
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	2,500
Depth of cut (mm)	1
Machining time (sec)	_

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Connecting rod (edge face)

Workpiece information

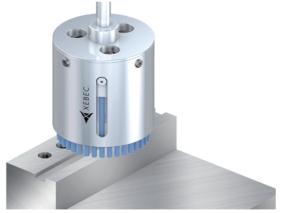
Industry	Automotive
Part name	Connecting rod (edge face)
Material type	S45C
Cutting process	Front cutter processing

Processing conditions

Tabl	XEBEC Brush for
Tool	Surface (A31-CB25M)
Processing detail	Deburring the edge face
	after milling process
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	2,500
Depth of cut (mm)	1
Machining time (sec)	_

Before

Tool Wire brush


Problem Burrs remained. Brushes deformed and caused the quality control problem in mass production.

After

Tool

XEBEC Brush for Surface (A31-CB25M)

Result Automated deburring with stable quality during production realized.

Ring plate

Workpiece information

Industry	Automotive
Part name	Ring plate
Material type	SPH
Cutting process	Others

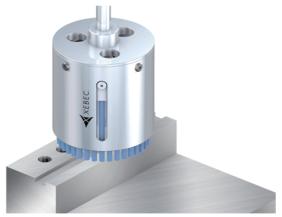
Processing conditions

Tool	XEBEC Brush for Surface (A32-CB25M)
Processing detail	Deburring outer edge after pressing
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	_
Depth of cut (mm)	0.5
Machining time (sec)	_

Before

Tool Abrasives-impregnated nylon brush

Problem


Nylon brushes did not have enough grinding power. On the other hand, grindstones did not fit well to workpieces and burr remained. Therefore, deburring

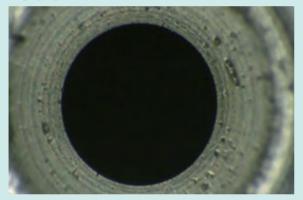
could not be automated.

After

Tool XEBEC Brush Surface (A32-CB25M)

Result No burrs left. Full automation process realized.

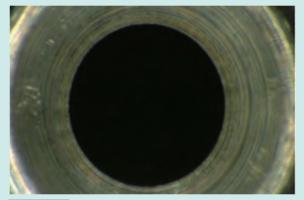
Common Rail


Workpiece information

Industry	Automotive
Part name	Common rail
Material type	S48C
Cutting process	Grinding

Processing conditions

Tool	XEBEC Brush Surface (A21-CB25M) XEBEC Floating Holder (FH-ST12)
Processing detail	Deburring the seal surface after grinding process
Spindle Speed (min -1)	3,000
Depth of cut (mm)	4


Before

Tool Sandpaper

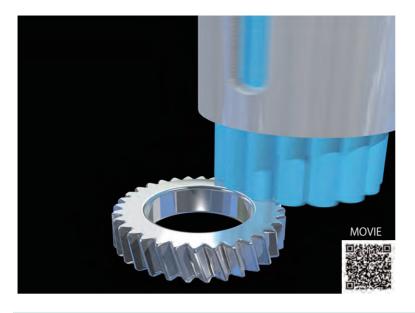
Problem Low production rate due to unstable surface roughness. Short tool life of sandpaper caused a cost problem.

After

Tool XEBEC Brush for Surface (A21-CB25M)
XEBEC Floating Holder (FH-ST12)

Result

Required surface roughness realized in shorter cycle time. Reduction of labor costs corresponding to 20 hours of manual deburring work with sandpaper has been achieved.


Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Tool XEBEC Brush ™ Surface

Ideal for deburring, cutter mark removal and polishing on surface

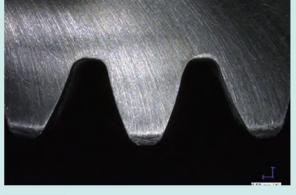
Pinion gear

Workpiece information

Industry	Automotive
Part name	Pinion gear
Material type	S45C
Cutting process	Gear cutting

Processing conditions

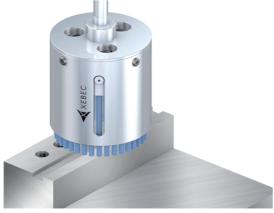
Tool	XEBEC Brush Surface (A31-CB40M) XEBEC Floating Holder (FH-ST12)
Processing detail	Deburring the gear edge face after hobbing process
Spindle Speed (min -1)	900
Table Feed (mm/min)	2,400
Depth of cut (mm)	3


Before

Tool Problem File

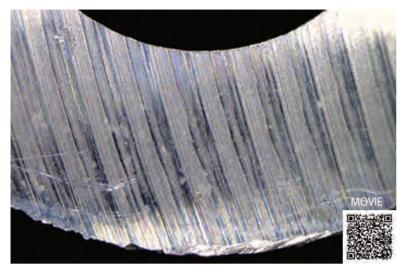
It took time for manual deburring and edge quality was not stable.

After



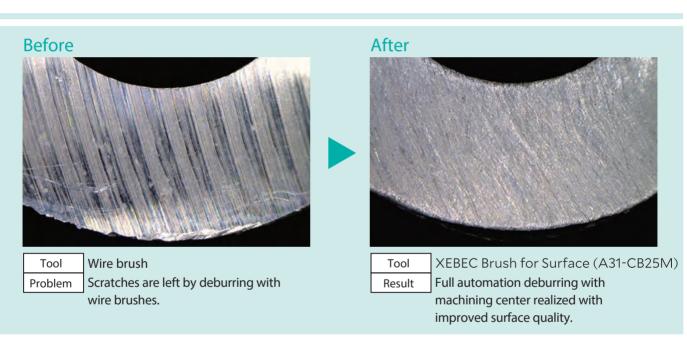
Tool

XEBEC Brush for Surface (A31-CB40M) XEBEC Floating Holder (FH-ST12)


Result

Deburring is automated. Consistent finish in a short time.

Oil pan



Workpiece information

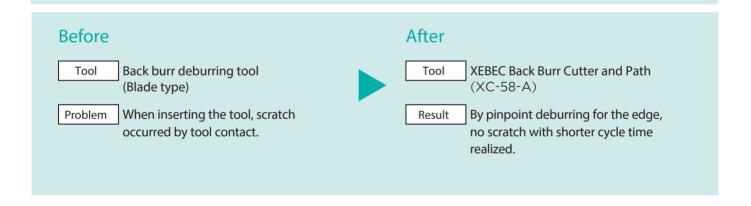
Industry	Automotive
Part name	Oil pan
Material type	Alminium alloy
Cutting process	Front cutter processing

Processing conditions

<u> </u>	
Tool	XEBEC Brush for Surface (A31-CB25M)
Processing detail	Deburring of the matching surface after face milling process.
Spindle Speed (min -1)	2,000
Table Feed (mm/min)	3,000
Depth of cut (mm)	0.5
Machining time (sec)	_

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Yoke



Workpiece information

Industry	Automotive
Part name	Yoke
Material type	SCM
Cutting process	Drilling

Processing conditions

Tool	XEBEC Back Burr Cutter and Path (XC-58-A)
Processing detail	Deburring the back burr after drilling process
Spindle Speed (min -1)	6,000
Depth of cut (mm)	900

Exhaust manifold

Workpiece information

Industry	Automotive
Part name	Exhaust manifold
Material type	AC4C
Cutting process	Front cutter processing

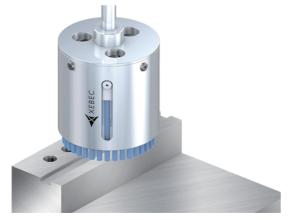
Processing conditions

Tool	XEBEC Brush for Surface (A21-CB60M)
Processing detail	Deburring of the matching surface after face milling process.
Spindle Speed (min -1)	1,000
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.5

Before

Tool

It took time for manual deburring. Problem This caused unstable quality.


After

Tool

XEBEC Brush for Surface (A21-CB60M)

Result

Automated deburring with stable quality in a shorter cycle time realized.

Carrier

Workpiece information

Industry	Automotive
Part name	Carrier
Material type	Press
Cutting process	Drilling

Processing conditions

Tool	XEBEC Stone Flexible Shaft (CH-PM6B)
Processing detail	Cross hole deburring after drilling process
Spindle Speed (min -1)	9,000
Table Feed (mm/min)	_
Depth of cut (mm)	0.5
Machining time (sec)	_

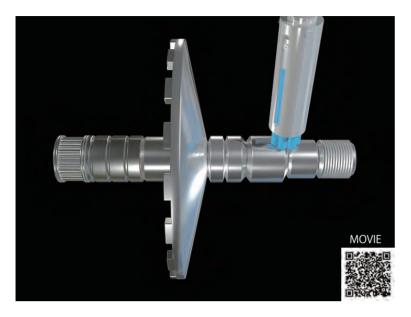
Before

Tool Rotary bar and rotating tool

Rotary bar used with rotary tool
is used for processing. Edge shape
damaged and secondary burr
(back burr) generated.

After

Tool XEBEC Stone Flexible Shaft (CH-PM6B)


Result Stable edge shape realized without generating the secondary burr.

Hole deburring

Pulley

Workpiece information

Industry	Automotvie
Part name	Pulley
Material type	Scr420
Cutting process	Side cutter processing

Processing conditions

Tool	XEBEC Brush Surface (A31-CB25M)
Processing detail	Deburring the outer edge after side cutter
Spindle Speed (min -1)	1,800
Table Feed (mm/min)	1
Depth of cut (mm)	1,800
Machining time (sec)	_

Before

Tool File

It took long time for manual Problem deburring.

After

Tool

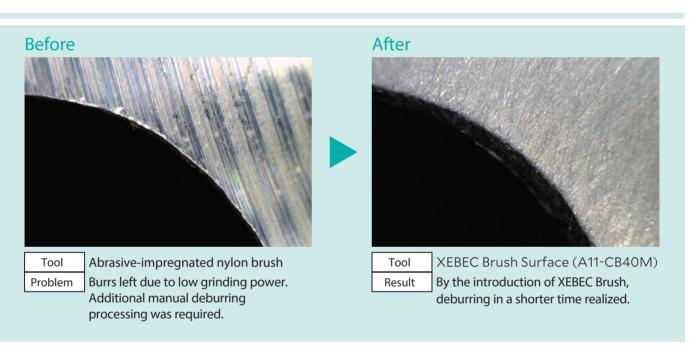
XEBEC Brush Surface (A31-CB25M)

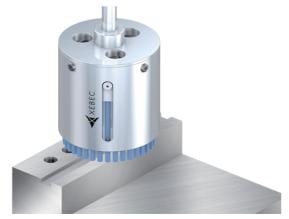
Result

Automated deburring with stable quality in a shorter cycle time realized.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Transmission case (Matching surface)




Workpiece information

Industry	Automotvie
Part name	Transmission (Matching surface)
Material type	ADC12
Cutting process	Front cutter processing

Processing conditions

Tool	XEBEC Brush Surface (A11-CB40M)
Processing detail	Deburring of the matching surface after face milling process
Spindle Speed (min -1)	2,160
Table Feed (mm/min)	7,000
Depth of cut (mm)	0.5

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

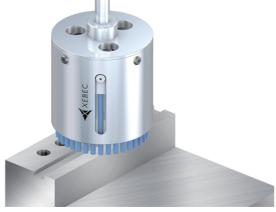
Cam cap

Workpiece information

Industry	Automotvie
Part name	Cam cap
Material type	ADC12
Cutting process	Front cutter processing

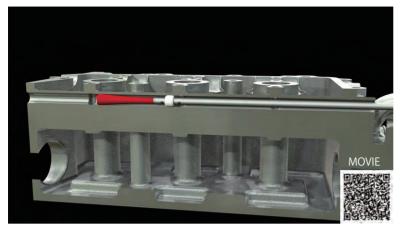
Processing conditions

Tool	XEBEC Brush for
1001	surface (A11-CB40M)
Processing detail	Deburring the matching surface after face milling process.
Spindle Speed (min -1)	1,350
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.5



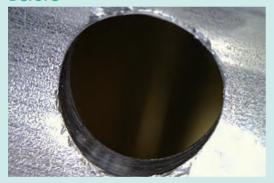
Tool Problem Abrasive-impregnated nylon brush Burrs remained due to insufficient grinding force of nylon brushes and additional manual deburring process required.

After



Tool Result XEBEC Brush for Surface (A11-CB40M) Stable and efficient deburring realized by fully automated deburring with machining centers.

Cylinder head (Oil gallery)


Workpiece information

Industry	Automotvie	
Part name	Cylinder head	(Oil gallery)
Material type	ADC12	
Cutting process	Drilling	

Processing conditions


Tool	XEBEC Brush Crosshole Extra-Long (CH-A12-5F)
Processing detail	Cross hole deburring and internal polishing after drillng process
Spindle Speed (min -1)	7,200
Table Feed (mm/min)	2,000
Depth of cut (mm)	_

Tool Problem Abrasive-impregnated nylon brush Burrs were not removed completely. This caused the problem of quality inspection.

Afte

Tool

XEBEC Brush Cross hole Extra-Long (CH-A12-5F) Deburring and polishing quality stabilized.

Result

Tool

XEBEC Brush [™] Crosshole Extra-Long

Suitable for deburring, polishing and cutter mark removal of inner diameter and counterbored part exceeding 150 mm in depth

Deburring after drilling Cutter mark removal and polishing on inner diameter

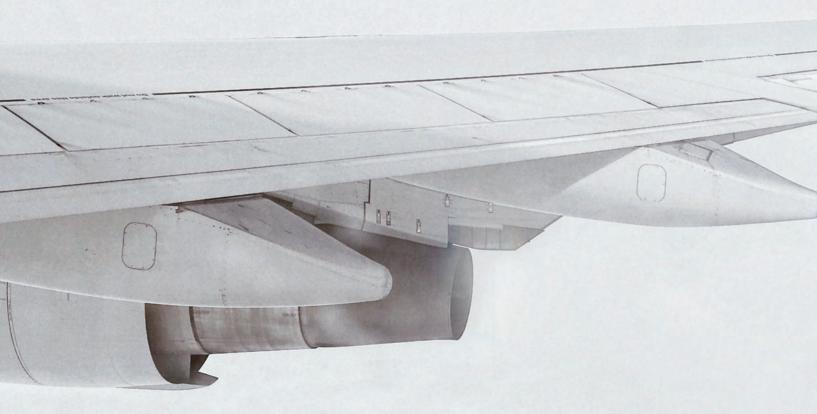
Output Shaft (Oil hole)

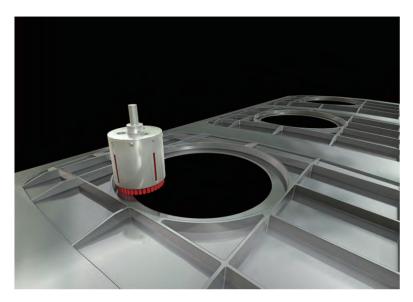
Workpiece information

Industry	Automotive
Part name	Output Shaft (Oil hole)
Material type	SCM
Cutting process	Drilling

Processing conditions

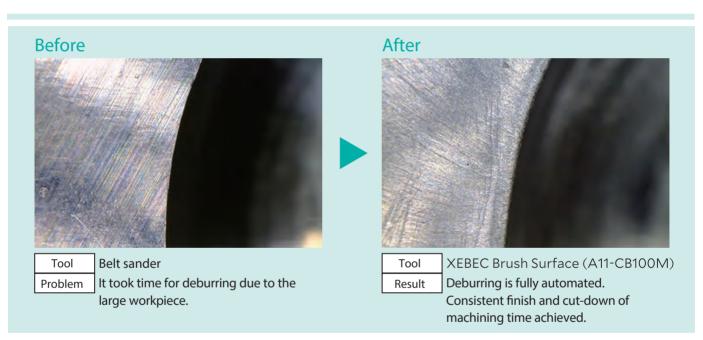
Tool	XEBEC Back Burr Cutter and Path (XC-28-A + α)
Processing detail	Back deburring after drilling
Spindle Speed (min ⁻¹)	12,500
Table Feed (mm/min)	1,000
Depth of cut (mm)	_
Machining time (sec)	_


Before After Back deburring tools **XEBEC Back Burr Cutter and Path** Tool Tool (cotter pin type) (XC-28-A + special path) Problem Poor deburring performances such as Result Uniform deburring amount without remained burrs, sec ondary burrs and secondary burrs realized by high uneven edges. quality CN C deburring.


Deburring after drilling

Aerospace

Aircraft body



Workpiece information

Industry	Aerospace
Part name	Aircraft body
Material type	Aluminum alloy
Cutting process	Front cutter processing

Processing conditions

9		
Tool	XEBEC Brush Surface (A11-CB100M)	
Processing detail	Deburring the edge face after milling process	
Spindle Speed (min -1)	960	
Table Feed (mm/min)	500	
Depth of cut (mm)	0.3	
Machining time (sec)	_	



Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Blisk

Workpiece information

Industry	Aerospace
Part name	Blisk
Material type	Inconel
Cutting process	Ball end mill processing

Processing conditions

Tool	XEBEC Brush Surface (A21-CB25M)
Processing detail	Deburring after ball-end milling process
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	2,400
Depth of cut (mm)	0.5
Machining time (sec)	_

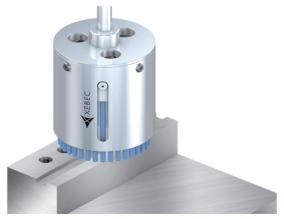
Before

Tool

Grindstone

Problem

It took time for deburring due to the complicated design of workpiece.
Resulted in unstable edge quality.


After

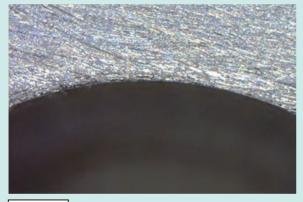
Tool

XEBEC Brush Surface (A21-CB25M)

Result

By the introduction of automated deburring, 1 operator can operate the multiple machining centers.

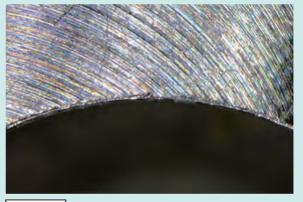
Landing gear parts


Workpiece information

Industry	Aerospace
Part name	Landing gear parts
Material type	Aluminum
Cutting process	Front cutter processing

Processing conditions

Tool	XEBEC Brush Surface (A11-CB100M)
Processing detail	Deburring the edge face after milling process
Spindle Speed (min -1)	3,000
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.7
Machining time (sec)	_



Tool

File Problem Manual deburring caused unstable quality and long processing time required.

After

Tool Result XEBEC Brush Surface (A11-CB40M) Deburring is fully automated and consistent finish achieved.

Pipe parts for aircrafts (Cross hole)

Workpiece information

Industry	Aerospace
Part name	Pipe parts for aircrafts (Cross hole)
Material type	SUS
Cutting process	Drilling

Processing conditions

Tool	XEBEC Stone Flexible Shaft Type (CH-PM-6B)
Processing detail	Cross hole deburring (back burr) after drilling process
Spindle Speed (min -1)	2,000
Table Feed (mm/min)	_
Depth of cut (mm)	_
Machining time (sec)	30sec/hole

Before

Tool Rubber grindstone in the rotating tool

Problem Finish quality varied from the skill of workers. It took around 40 minutes to deburr 16 holes (150 seconds/hole).

After

Tool XEBEC Stone Flexible Shaft Type (CH-PM-6B)

Result

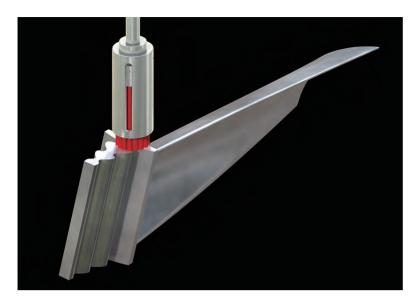
Insert the spherical grinding stone with the cross hole and contour the edge while pulling the tool lightly. Stable quality with shorter cycle time realized.

Tool

XEBEC Stone

TM Flexible Shaft

Flexible shaft enables soft contact with a workpiece and suppresses chattering during process.


Ideal for deburring both front and back of drilled holes.

contact us

Turbine blade

Workpiece information

Industry	Aerospace
Part name	Turbine blade
Material type	SUS316
Cutting process	Ball end mill processing

Processing conditions

r recessing correlations	
Tool	XEBEC Brush Surface (A11-CB25M)
Processing detail	Deburring after ball-end milling process
Spindle Speed (min -1)	1,000
Table Feed (mm/min)	1,000
Depth of cut (mm)	0.3
Machining time (sec)	_

Before

Tool

Problem

Deburring caused unstable edge quality. Recovering process was required.

After

Tool Result XEBEC Brush Surface (A11-CB25M)

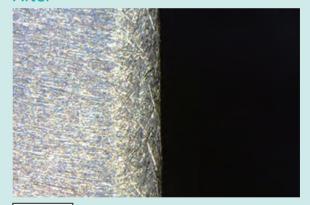
By the introduction of automated deburring, stable quality with even edge shape realized.

Turbine disk

Workpiece information

Industry	Aerospace
Part name	Turbine disk
Material type	Inconel
Cutting process	Others

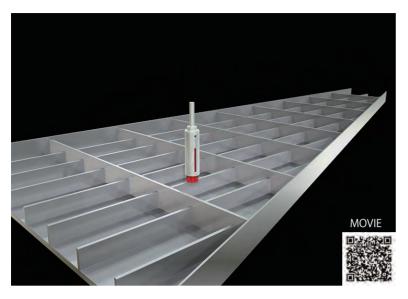
Processing conditions


Tool	XEBEC Brush Surface (A11-CB40M)
Processing detail	Deburring after grinding process
Spindle Speed (min -1)	1,500
Table Feed (mm/min)	2,400
Depth of cut (mm)	0.5
Machining time (sec)	_



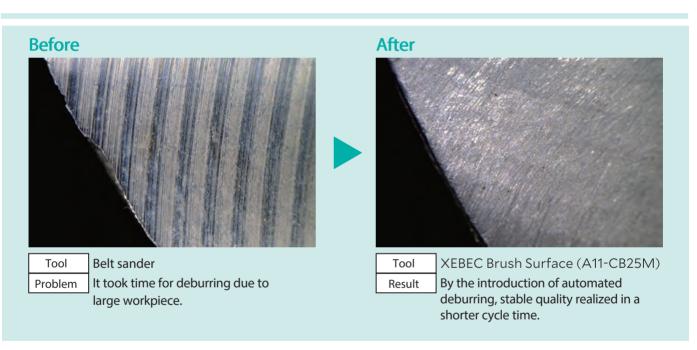
Tool Problem Grindstone
Burrs remained and edge quality was inconsistent.

After



Tool Result XEBEC Brush Surface (A11-CB40M) Achieved full automation with machining center. No burrs left and quality stabilized.

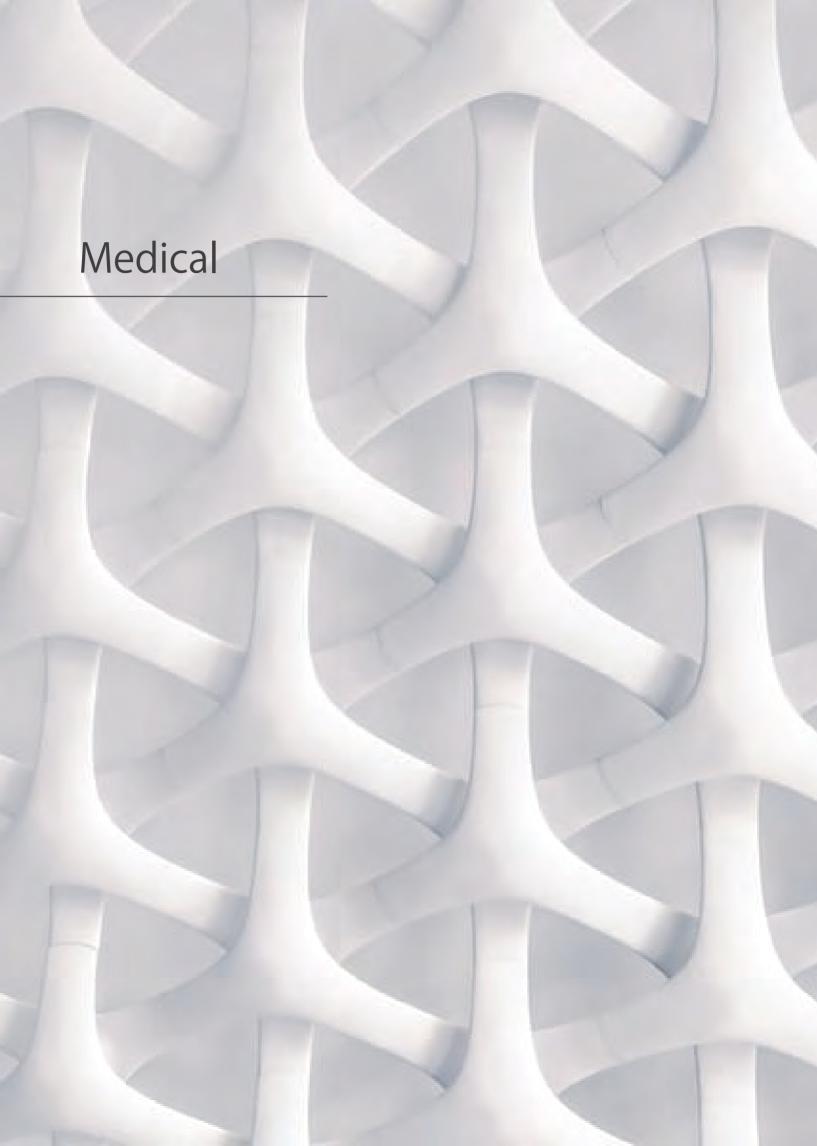
Wing rib



Workpiece information

Industry	Aerospace
Part name	Wing rib
Material type	Aluminum
Cutting process	End mill processing

Processing conditions


Tool	XEBEC Brush Surface (A11-CB25M)
Processing detail	Deburring after end milling process
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	800
Depth of cut (mm)	0.7
Machining time (sec)	_

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Artificial bone

Workpiece information

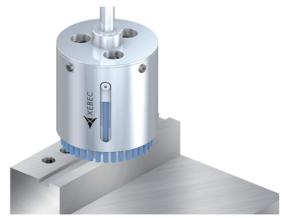
Industry	Medical
Part name	Artificial bone
Material type	Stainless
Cutting process	End mill processing

Processing conditions

. recessing contant	
Tool	XEBEC Brush Surface (A31-CB06M)
Processing detail	Removal of cutter marks and polishing after end milling process
Spindle Speed (min -1)	6,500
Table Feed (mm/min)	1,200
Depth of cut (mm)	0.5

Before

Tool Grindstone, sandpaper


Problem It took time for deburring by manual work. Resulted in unstable quality.

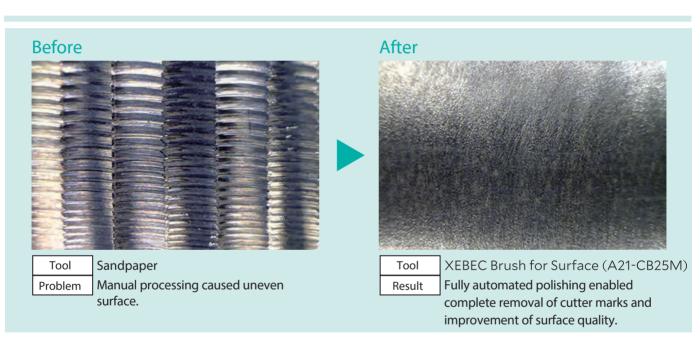
After

Tool XEBEC Brush Surface (A31-CB06M)

Result

Automated deburring with stable quality in a shorter cycle time realized.

Artificial hip joint



Workpiece information

Industry	Medical
Part name	Artificial hip joint
Material type	Titanium alloy
Cutting process	Ball end mill processing

Processing conditions

Tool	XEBEC Brush for Surface (A21-CB25M)
Processing detail	Removal of cutter marks after ball-end milling process
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	1,500
Depth of cut (mm)	0.4

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Convex surface


Workpiece information

Industry	Medical
Part name	Convex surface
Material type	Cobalt-chromium alloy
Cutting process	Cutting

Processing conditions

3	
Tool	XEBEC Brush Surface (A13-CB06M)
Processing detail	Removal of cutter marks and polishing after end milling process
Work piece rotational speed (min ⁻¹)	450
Spindle Speed (min -1)	3,440 (Pre-finishing process) 8,100 (Finishing process)
Table Feed (mm/min)	0.1

Before Tool Grindstone, sandpaper Problem It took time for deburring by manual work. Resulted in unstable quality. Result Automated deburring with stable quality in a shorter cycle time realized.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Cup

Workpiece information

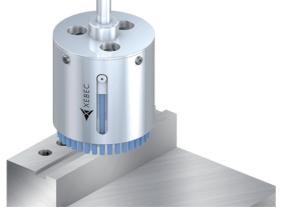
Industry	Medical
Part name	Cup
Material type	Cobalt-chromium alloy
Cutting process	Turning

Processing conditions

Tool	XEBEC Brush for Surface (A13-CB06M)
Processing detail	Removal of cutter marks and polishing after end milling process
Work piece rotational speed (min ⁻¹)	2,250
Spindle Speed (min -1)	1,800
Table Feed (mm/min)	0.1
Depth of cut (mm)	0.2

Before

Grindstone, sandpaper


Problem It took time for deburring by manual work. Resulted in unstable quality.

After


Tool XEBEC Brush for Surface (A13-CB06M)

Result By CNC machine polishing, stable quality realized in a short cycle

quality realized in a time.

Board

Workpiece information

Industry	General Machinery
Part name	Board
Material type	AC4C
Cutting process	Face mill processing

Processing conditions

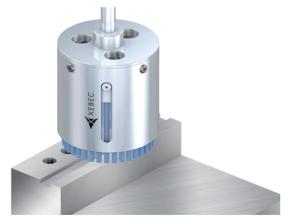
r roccosing conditions	
Tool	XEBEC Brush Surface (A11-CB100M) XEBEC Floating Holder (FH-ST20)
Processing detail	Removal of cutter marks and polishing after milling process
Spindle Speed (min -1)	960
Table Feed (mm/min)	2,400
Depth of cut (mm)	0.2
Machining time (sec)	_

Before

Tool Sandpaper

Problem It v

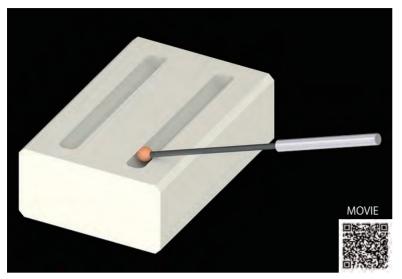
It was necessary to apply several abrasive papers with different grits. Work hours consuming.


After

Tool

XEBEC Brush Surface (A11-CB100M) XEBEC Floating Holder (FH-ST20)

Result


Fully automated machine polishing enabled finishing operation in a shorter time.

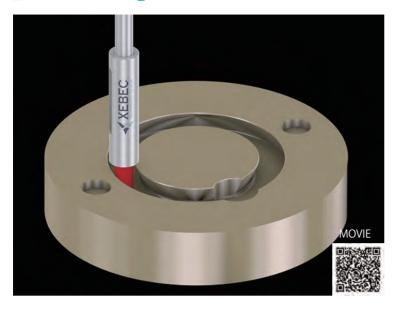
Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Ceramic parts

Workpiece information

Industry	General Machinery
Part name	Ceramic parts
Material type	Brittle material
Cutting process	Others

Processing conditions


Tool	XEBEC Stone Flexible Shaft Type (CH-PO-4B)
Processing detail	Polishing the bottom part after grooving process
Spindle Speed (min -1)	4,000
Depth of cut (mm)	0.5

Before After XEBEC Stone Flexible Shaft Type Tool Sandpaper Tool (CH-PO-4B) Polishing was done by sandpaper. Simplified deburring realized by Problem Result It damaged the edge shape. Besides, moving tools across the groove. sandpapers wore out easily and Edge quality stabilized. replacement required frequently.

Dovetail groove

Workpiece information

Industry	General Machinery
Part name	Dovetail groove
Material type	Iron-based
Cutting process	_

Processing conditions

Tool	XEBEC Brush for surface (A11-CB06M)
Processing detail	Removal of cutter marks and polishing after dovetailing process
Spindle Speed (min -1)	10,000
Table Feed (mm/min)	1,000
Depth of cut (mm)	0.3

Tool Problem Grindstone, Sandpaper Burrs were at hard-to-reach part. It took time for polishing.

After

Tool Result XEBEC Brush for Surface (A11-CB06M)
Polishing in a shorter time realized
with stable quality.

Hydraulic block

Workpiece information

Industry	General Machinery
Part name	Hydraulic block
Material type	Aluminum
Cutting process	Drilling

Processing conditions

Tool	XEBEC Back Burr Cutter and Path (XC-28-B)
Processing detail	Back deburring after drilling
Spindle Speed (min -1)	2,000
Table Feed (mm/min)	160
Depth of cut (mm)	_
Machining time (sec)	_

Before

Tool Grindstone

Problem

CNC deburring was given up once due to various combinations of cross holes and tools were required respectively. Manual deburring with files was inefficient and time consuming.

After

Tool XEBEC Back Burr Cutter and Path (XC-28-B)

Result

CNC deburring realized with just 1 type of tool despite many combinations of holes to deburr.

Deburring after drilling

contact us

Hydraulic valve (Cross hole)

Workpiece information

Industry	General Machinery
Part name	Hydraulic valve (Cross hole)
Material type	Steel-based
Cutting process	Drilling

Processing conditions

Tool	XEBEC Stone Flexible Shaft Type (CH-PM-5R-C01)
Processing detail	Crosshole (blind hole) deburring after drilling process
Spindle Speed (min -1)	5,000-8,000
Table Feed (mm/min)	_
Depth of cut (mm)	0.5

carbide rotary bar on the rotating tool

Problem The shape of edge was damaged and secondary burrs generated by deburring.

After

XEBEC Stone Flexible Shaft Type (CH-PM-5B)

Result Allows the tool to contact with bending the shaft softly (displacement of bending = 0.5mm approximately).

> Enables to remove the burrs only with keeping the shape of the edge. Achieved good processing efficiency. The process used to cause tiredness for workers due to the long and narrow shape of workpiece.

XEBEC Stone ™ Flexible Shaft Tool

Flexible shaft allows soft contact with a workpiece and suppresses subtle vibration when being processed. Ideal for deburring the front and back of drilled holes both.

Ink roll

Workpiece information

Industry	General Machinery
Part name	Ink roll
Material type	Iron-based
Cutting process	Turning

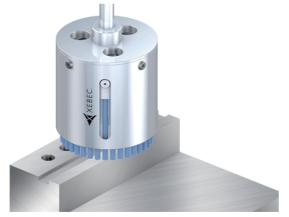
Processing conditions

9	
Tool	XEBEC Brush Surface (A21-CB40M)
Processing detail	Deburring of cylinder surface after grinding process
Spindle Speed (min -1)	1,080
Table Feed (mm/min)	3,600
Depth of cut (mm)	0.5

Before

File Tool

Problem


Approximately 1mm-deep burrs are generated on the entire surface of a shaft over 800 mm. It took time for deburring.

After

XEBEC Brush Surface Tool (A21-CB40M)

Result

By introduction of fully automated deburring, process time decreased from several hours to 15 min.

Jig plate

Workpiece information

Industry	General Machinery
Part name	Jig plate
Material type	Alminium
Cutting process	Drilling

Processing conditions

Tool	XEBEC Brush for Surface (A11-CB40M)
Processing detail	Deburring after drilling with φ1.2mm tool
Spindle Speed (min -1)	2,000
Table Feed (mm/min)	4,000
Depth of cut (mm)	0.5
Machining time (sec)	_

Before

Tool Sandpaper

Problem It took time for deburring.

Secondary burrs occurred in the holes sometimes.

φ1.2

After

Tool XEBEC Brush for Surface (A11-CB40M)

(ATT-CB401

Result Shorter deburring cycle time and stable quality realized.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Joint (Blind hole)

Workpiece information

Industry	General Machinery
Part name	Joint (Blind hole)
Material type	SUS
Cutting process	Drilling

Processing conditions

Tool	XEBEC Stone Flexible Shaft (CH-PM-5R-C01)
Processing detail	Cross hole (Blind hole) deburring after drilling process
Spindle Speed (min -1)	5,000-8,000
Depth of cut (mm)	0.5

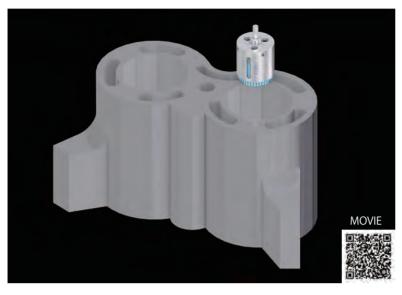
Before

Tool Rotating tool with drill and rubber grind stone

Problem Unstable quality due to secondary burrs by drilling and rubber grindstone clogged.

After

Tool XEBEC Stone Flexible Shaft Type (CH-PM-5R-C01)


Result No secondary burrs left. Stable and efficient deburring quality realized.

Hole deburring

Large cast iron parts

Workpiece information

Industry	General Machinery
Part name	Large cast iron parts
Material type	FC300
Cutting process	Face mill processing

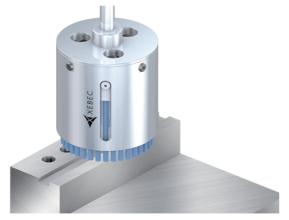
Processing conditions

Tool	XEBEC Brush Surface (A31-CB100M)
Processing detail	Deburring the edge face after milling process
Spindle Speed (min -1)	860
Table Feed (mm/min)	2,300
Depth of cut (mm)	1
Machining time (sec)	30

Before

Tool Disc sander

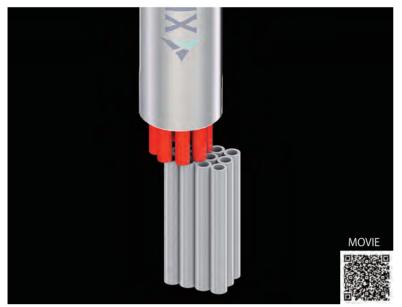
Problem It took time for deburring due to large workpiece over 400mm.


After

Tool :

XEBEC Brush Surface (A31-CB100M)

Result


Automated deburring enables consistent finishing in a shorter time.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Pipe (Edge face)

Workpiece information

Industry	General Machinery
Part name	Pipe (Aluminum)
Material type	Aluminum
Cutting process	Cutting processing

Processing conditions

Tool	XEBEC Brush Surface (A11-CB25M)
Processing detail	Deburring the section after cutting process
Spindle Speed (min -1)	4,000
Table Feed (mm/min)	3,000
Depth of cut (mm)	1.0
Machining time (sec)	_

Before

Tool

File

Problem

Burrs on the inside and outside edges of the pipe were manually removed by filing. Time-consuming and inefficient work. Finish quality was not consistent.


After

Tool

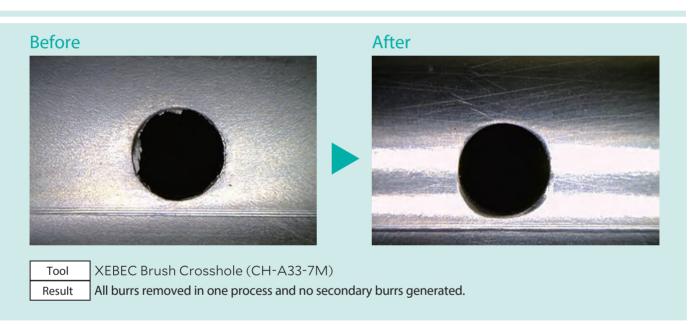
XEBEC Brush Surface (A11-CB25M)

Fix and put 12 pipes together with a jig and deburr them all at once.

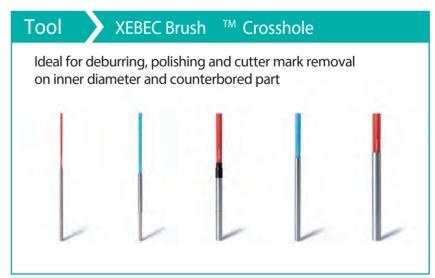
Achieved efficient automatic deburring in a shorter time. Edge shapes became uniform and finish quality was improved.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Pipes (SUS)



Workpiece information


Industry	General Machinery
Part name	Pipes (SUS)
Material type	SUS304
Cutting process	Drilling

Processing conditions

	i .
Tool	XEBEC Brush Crosshole (CH-A33-7M)
Processing detail	Crosshole deburring and internal polishing after drilling process
Spindle Speed (min -1)	8,000
Table Feed (mm/min)	300
Depth of cut (mm)	_

polishing

Spool

Workpiece information

Industry	General Machinery
Part name	Spool
Material type	Iron-based
Cutting process	Drilling

Processing conditions

Tool	XEBEC Stone Flexible Shaft Type (CH-PM-6B)
Processing detail	Deburring the edge after end milling process
Spindle Speed (min -1)	5,000
Depth of cut (mm)	0.5

Before

Tool File

Problem There were problems such as unstable edge shapes and secondary burrs.

After

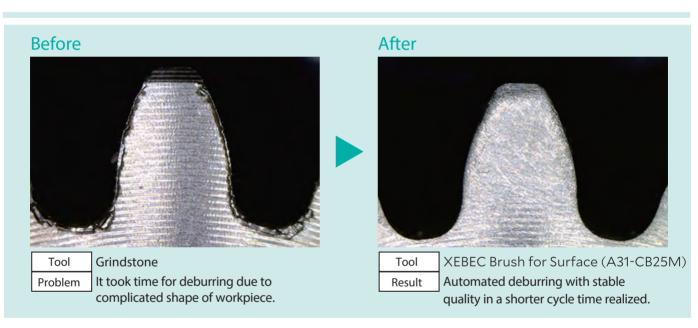
Tool XEBEC Stone Flexible Shaft Type (CH-PM-6B)

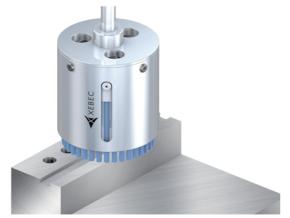
Result Simplified deburring realized by moving the tool across the groove.

No secondary burrs were reported and quality stabilized.

Tool XEBEC Stone TM Flexible Shaft Flexible shaft allows soft contact with a workpiece and suppresses subtle vibration when being processed. Ideal for deburring the front and back of drilled holes both.

Spur gear




Workpiece information

Industry	General Machinery
Part name	Spur gear
Material type	S45C
Cutting process	Gear cutting

Processing conditions

Tool	XEBEC Brush for Surface (A31-CB25M)
Processing detail	Deburring the gear edge face after hobbing process
Spindle Speed (min -1)	5,000
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.5

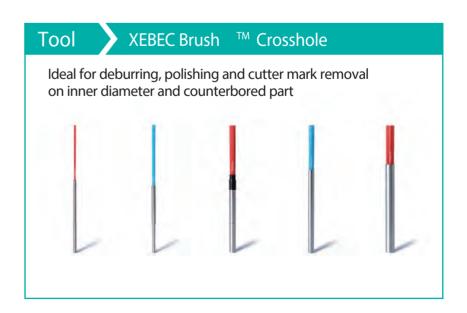
Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Valve case (Cross hole)



Workpiece information

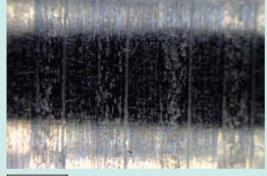
Industry	General Machinery
Part name	Valve case (Cross hole)
Material type	PP (glass fiber included)
Cutting process	Drilling


Processing conditions

Tool	XEBEC Brush Crosshole (CH-A12-5M)
Processing detail	Crosshole deburring after drilling process
Spindle Speed (min -1)	8,000
Table Feed (mm/min)	1,000

Deburring after drilling Cutter mark removal and inner diameter polishing

SUS mold


Workpiece information

Industry	General Machinery
Part name	SUS Mold
Material type	SUS304
Cutting process	End mill processing

Processing conditions

Tool	XEBEC Brush for Surface (A31-CB25M+ A11-CB25M)
Processing detail	Removal of cutter marks and polishing after ball-end milling process Tool used : A31-CB25M, Rotation speed : 5000min -1, Feed : 1500mm/min , Depth of cut : 0.3 mm and Tool used : A11-CB25M, Rotation speed : 5000min -1, Feed : 6000mm/min , Depth of cut : 0.3mm
Spindle Speed (min -1)	3,200
Table Feed (mm/min)	1,500
Depth of cut (mm)	0.1
Machining time (sec)	81

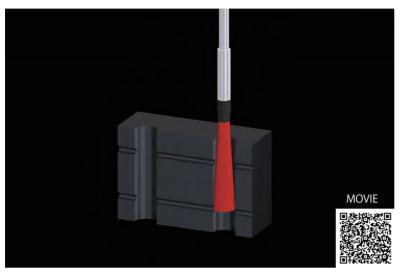
Before

Tool

contact us

XEBEC Brush for Surface (A31-CB25M+A11-CB25M)

Result Surface roughness improved from Ra 0.21


 μ m, Rz 1.56 μ m to Ra 0.03 μ m, Rz 0.35 μ m respectively.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Valve case (Cross hole)

Workpiece information

Industry	General Machinery
Part name	Valve case (Cross hole)
Material type	PP (Glass fiber included)
Cutting process	Drilling

Processing conditions

Tool	XEBEC Brush Cross hole (CH-A12-5M)
Processing detail	Cross hole deburring after drilling process
Spindle Speed (min -1)	8,000
Table Feed (mm/min)	1,000
Depth of cut (mm)	_

Tool Cutter Tool Cutter Tool XEBEC Brush Cross hole (CH-A12-5M) Result Automated deburring realized by custom made machine. Work efficiency improved and no burrs reported.

Spur gear

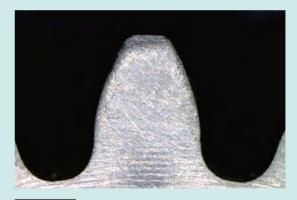
Workpiece information

Industry	General Machinery
Part name	Spur gear
Material type	S45C
Cutting process	Gear cutting

Processing conditions

Tool	XEBEC Brush for Surface (A31-CB25M)
Processing detail	Deburring the gear edge face after hobbing process
Spindle Speed (min -1)	5,000
Table Feed (mm/min)	2,000
Depth of cut (mm)	0.5

Before


Tool

Grindstone

Problem

It took time for deburring due to complicated shape of workpiece.

After

Tool

XEBEC Brush for Surface (A31-CB25M)

Result

Automated deburring with stable quality in a shorter cycle time realized.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Electronics

Smartphone (Body)

Workpiece information

Industry	Electronics
Part name	Smartphone (Body)
Material type	Aluminium and plastic based complex material
Cutting process	End milling

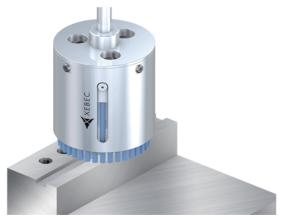
Processing conditions

Tool	XEBEC Brush Surface (A13-CB15M)
Processing detail	Deburring after end milling process
Spindle Speed (min -1)	3,000
Table Feed (mm/min)	4,000
Depth of cut (mm)	0.5
Machining time (sec)	_

Before

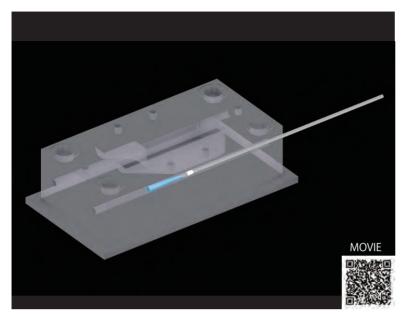
Problem

It was necessary to design machining line under the prerequisite that deburring is automated.


After

XEBEC Brush Surface (A13-CB15M) Tool

Result

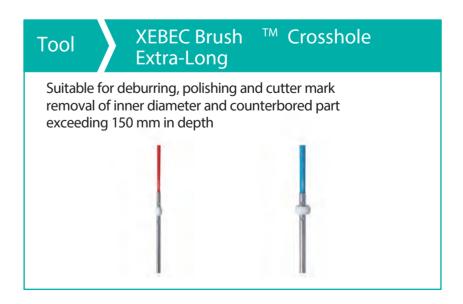

Fully automated deburring in a machining center enabled stable and efficient deburring.

Mold

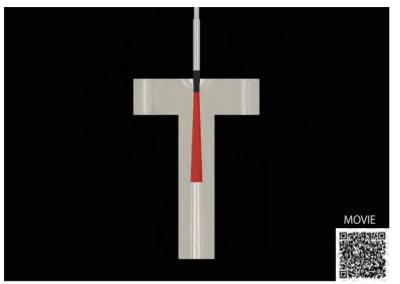
Mold (Cooling hole)

Workpiece information

Industry	Mold	
Part name	Mold (Cooling hole)	
Material type	SKD60	
Cutting process	Reaming	


Processing conditions

. recessing containers	
Tool	XEBEC Brush Crosshole (CH-A33-7F)
Processing detail	Cooling hole polishing after reaming
Spindle Speed (min -1)	12,000
Table Feed (mm/min)	2,000
Depth of cut (mm)	_


After Before Tool Round bar grindstone Tool XEBEC Brush Crosshole (CH-A33-7F) It took time for manual use of rod Stable finish quality in a shorter time Problem Result grindstone. There was no tool realized. reaching a deep hole of 300mm or more. Manhour required to make a custom-build shank in order to hold a grindstone.

Deburring after drilling Cutter mark removal and inner diameter polishing

Mold (Sprue hole)

Workpiece information

Industry	Mold
Part name	Mold (Sprue hole)
Material type	SKD2
Cutting process	Others

Processing conditions

Tool	XEBEC Brush Crosshole (CH-A12-3M)
Processing detail	Removal of cutter marks and polishing after electrical discharge machining
Spindle Speed (min -1)	10,000
Table Feed (mm/min)	_

Before

Tool

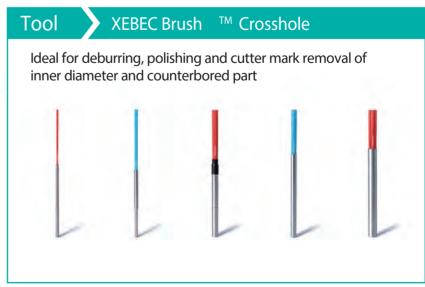
Round bar grindstone

Problem

Manual use of rod grindstone. It was necessary to form the tip of the grindstone to polish the tapered portion. Manual processing resulted in unstable polishing quality.

After

Tool XEBEC Brush Crosshole (CH-A12-3M)


Result

Work efficiency improved because the shape of a brush fits to the tapered portion of a workpiece. Enables to remove cutter marks in a shorter time.

Deburring after drilling Cutter mark removal and polishing on inner diameter

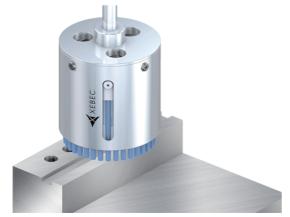
contact us

NAK mold

Workpiece information

Industry	Mold
Part name	NAK Mold
Material type	NAK
Cutting process	End mill processing

Processing conditions


Tool	XEBEC Brush for Surface (A31-CB25M+ A11-CB25M)
Processing detail	Removal of cutter marks and polishing after end milling process Tool used : A31-CB25M, Rotation speed : 5000min ⁻¹ , Feed : 500 mm/min , Depth of cut : 0.3mm and Tool used : A11-CB25M, Rotation speed : 5000min ⁻¹ , Feed : 500mm/min , Depth of cut : 0.2mm
Spindle Speed (min -1)	5,000
Table Feed (mm/min)	500
Depth of cut (mm)	0.3
Machining time (sec)	50

After **Before** XEBEC Brush for Surface (A31-CB25M+A11-CB25M)

Surface roughness improved from Ra 1.4 Problem

 μ m, Rz 6.1 μ m to Ra 0.029 μ m, Rz 0.337 μ m respectively.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

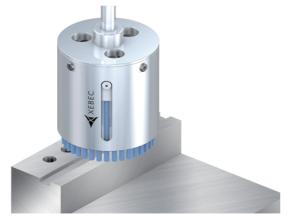
SKD mold

Workpiece information

Industry	Mold
Part name	SKD Mold
Material type	SKD
Cutting process	Others

Processing conditions

Tool	XEBEC Brush for Surface (A31-CB100M+ A11-CB100M)
Processing detail	Polishing of material surface Tool used: A11-CB100M, Rotation speed: 1200min -¹, Feed: 600 mm/min, Depth of cut: 0.2mm and Tool used: A11-CB100M, Rotation speed: 1,200min -³, Feed: 600 mm/min, Depth of cut: 0.2mm
Spindle Speed (min -1)	1,200
Table Feed (mm/min)	600
Depth of cut (mm)	0.2
Machining time (sec)	_


After

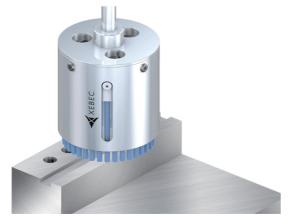
Tool Result XEBEC Brush for Surface (A31-CB100M+A11-CB100M)

Surface roughness improved from Ra 1.4

 μ m, Rz 6.1 μ m to Ra 0.029 μ m, Rz 0.337 μ m respectively.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

SUS mold


Workpiece information

Industry	Mold
Part name	SUS Mold
Material type	SUS304
Cutting process	End mill processing

Processing conditions

Tool	XEBEC Brush for Surface (A31-CB25M+ A11-CB25M)
Processing detail	Removal of cutter marks and polishing after end milling process Tool used : A31-CB25M, Rotation speed : 3200min ⁻¹ , Feed : 1500 mm/min, Depth of cut : 0.1mm and Tool used : A11-CB25M, Rotation speed : 4000min ⁻¹ , Feed : 6000 mm/min, Depth of cut : 0.3mm
Spindle Speed (min -1)	3,200
Table Feed (mm/min)	1,500
Depth of cut (mm)	0.1
Machining time (sec)	81

Before After Tool XEBEC Brush for Surface (A31-CB25M+A11-CB25M) Result Surface roughness improved from Ra 0.21 μm, Rz 1.56 μm to Ra 0.03 μm, Rz 0.35 μm respectively.

Deburring after face-milling, end-milling and drilling Cutter mark removal and polishing on surface

Vacuum forming

Workpiece information

Industry	Mold
Part name	Vacuum forming
Material type	Aluminum
Cutting process	End mill processing

Processing conditions

Tool	XEBEC Brush Surface (A11-CB25M)
Processing detail	Removal of cutter marks and polishing after end milling process
Spindle Speed (min -1)	3,600
Table Feed (mm/min)	4,000
Depth of cut (mm)	0.3
Machining time (sec)	_

Before

Tool Sandpaper

Problem

It was necessary to use multiple types of abrasive papers and it took long time for polishing. Additionally, manual deburring process caused unstable finish quality.

After

Tool XEBEC Brush Surface (A11-CB25M)

Result Polishing in a shorter cycle time with stable quality realized.

Sample

Machine tools

Tool holder

Workpiece information

Industry	Machine tools
Part name	Tool holder
Material type	Iron-based
Cutting process	Face mill processing

Processing conditions

Tool	XEBEC Brush Surface (A31-CB40M)
Processing detail	Deburring the edge face after milling process
Spindle Speed (min -1)	_
Table Feed (mm/min)	_
Depth of cut (mm)	
Machining time (sec)	_

Before

Tool

It took time for deburring by manual Problem work. Resulted in unstable quality.

After

Tool

XEBEC Brush Surface (A31-CB40M)

Result

Deburring is fully automated and all the processes are completed in a machining center.

Others

Output Shaft (Oil hole)

Workpiece information

Industry	Others
Part name	Output Shaft (Oil hole)
Material type	SCM
Cutting process	Drilling

Processing conditions

Tool	XEBEC Back Burr Cutter and Path (XC-28-A + α)
Processing detail	Back deburring after drilling
Spindle Speed (min ⁻¹)	12,500
Table Feed (mm/min)	1,000
Depth of cut (mm)	_
Machining time (sec)	_

Before After Back deburring tools **XEBEC Back Burr Cutter and Path** Tool Tool (cotter pin type) (XC-28-A + special path) Problem Poor deburring performances such as Result Uniform deburring amount without remained burrs, sec ondary burrs and secondary burrs realized by high uneven edges. quality CN C deburring.

Deburring after drilling

About XEBEC

Beautiful deburring

Since 2002, XEBEC has been assisting machine workshops around the world in CNC deburring.

Today, we are challenging to minimize lead time which takes to solve deburring problems as close

to zero by making the best of our knowledge and experiences.

"Change the myth of deburring and enhance the value of the finishing process."

"Creating the world where people can use their talent in creative fields."

This is what XEBEC will strive for.

XEBEC's 3 innovations

Technology Innovation	In order to provide essential	and overwhelming solutions,	we will continue technological
-----------------------	-------------------------------	-----------------------------	--------------------------------

innovation through the integration of scientific technologies, from material to software and

hardware.

Process Innovation We will continue to offer the best and innovative methods beyond the established concepts

for all business processes such as marketing, manufacturing, sales and delivery.

Precision Management We will continue to focus on quality and precision management in all aspects, including

consistent product quality, shipping accuracy and swift and careful customer support.

Corporate Outline

Corporate Name	XEBEC TECHNOLOGY CO.,LTD.	President & CEO	Norihiko Sumiyoshi
Incorporated	June 3, 1996	Location	Head Office
			Fuerte Kojimachi 1.7 Building 8th floor,
Business area	Development, manufacturing and sales of industrial deburring and polishing tools		1-7-25 Kojimachi, Chiyoda-ku,
			Tokyo, 102-0083, Japan
			TEL.+81-3-3239-3481
Capital	99 million Japanese Yen		FAX.+81-3-5211-8964

History

Oct. 2017

Multi-language website was released.

Mar. 2017

"Deburring Productivity Day" was established.

(Certified by Japan Anniversary Association)

Oct. 2016

"XEBEC Brush™ Wheel Type" was released.

Oct. 2016

"XEBEC Back Burr Cutter and Path $^{\text{TM}}$ was released.

Oct. 2015 Nov. 2015

"XEBEC Self-Adjusting Sleeve™" was released.

"XEBEC Plus Engineering Center" was established in Okazaki City, Aichi Pref.

Apr. 2015

"Mobile Micromotor System" was released.

Mar. 2015

Awarded the "Diversity Management Selection 100 of the year 2014" by the Ministry of Economy, Trade and Industry

Jun. 2014

"Deburring University" was established.

May 2014

The headquarters were moved to 1 Chome, Kojimachi, Chiyoda-ku, Tokyo.

Apr. 2013

"XEBEC Brush Length Adjustment Tool™" was released.

Jun. 2013

"XEBEC Plus R&D Center" was established in Ota-ku, Tokyo.

Vertical Machining Center was introduced. (Additional 1-axis mounted)

Oct. 2010

"XEBEC Floating Holder $^{\text{TM}}$ " was released.

Aug. 2012

SCARA robot was introduced at the head office for carrying out test cuts.

Oct. 2008

"XEBEC Stone™ Mounted Point" was released.

Oct. 2007

Norihiko Sumiyoshi assumed as the president and CEO.

Nov. 2004

"XEBEC Brush™ Crosshole" was released. "XEBEC Stone™ Flexible Shaft" was released.

Apr. 2002

"XEBEC Brush™ Surface" was released.

May 1998

"XEBEC Ceramic Stone™ Meister Finish" commenced

in earnest.

Jun. 1997

Certified as an authorized corporation by the Ministry of Economy, Trade and Industry under the Act on Temporary Measures for Facilitating Specific New Business.

Jun. 1996

XEBEC TECHNOLOGY CO.,LTD was incorporated.

Founder Takehiko Sumiyoshi

Distributore esclusivo per l'Italia

SEF Meccanotecnica srl 40050 Funo - Bologna - Italy via degli Orefici - Centergross - blocco 26 tel +39 051 6648811 vendite@sefmeccanotecnica.it